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Jahn-Teller system with spin-orbit coupling 

C C Chancey and M C M O’Brien 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, 
Oxford OX1 3NP, UK 

Received 8 August 1988 

Abstract. The TI  €3 ( E ~  C3 t2J Jahn-Teller system is studied under conditions of equally 
strong spin-orbit and linear vibronic interactions. Several unitary transformations are intro- 
duced which simplify the Hamiltonian, and a representation involving the lowest few total 
angular momentum eigenstates is set up. This procedure allows for the resonance energies 
and intensities to be solved for in a manner which improves with increasing coupling 
strengths. To complement this analysis, an approximate analytical solution is also developed. 
Comparison with previous matrix diagonalisation results shows good agreement. 

1. Introduction 

The aim of the work reported in this paper is to produce an account of the origins of the 
sharp resonances that occur at the upper energy side of the optical absorption band of 
the TI 63 ( E ~  CB r2J Jahn-Teller (JT) system. This system is that of an electronic p state, 
with spin-orbit coupling, strongly coupled to the set of five normal-mode coordinates 
that transform like the E and T2 irreducible representations (irreps) of the cubic group. 
We assume that these coordinates describe oscillations of a single frequency and are 
equally strongly coupled to the electronic state. In addition: we assume that the Jahn- 
leller (jTj eiiergjj is very large in c~mpar i sm with the !ioand b osci!!ation energy. 

The model we have chosen is not as exotic as might be thought. The absorption 
spectra of alkali atoms trapped in noble-gas matrices (Lund et a1 1984, Rose et aZ1986) 
clearly show evidence that the ratio E,,/fiw is very large. (The softness of these noble- 
gas matrices results in exceptionally small values of fiw.1 The assumption of equal 
coupling also appears to be well borne out in these materials, again probably because 
softness and close packing lead to behaviour well modelled by an elastic continuum. 
Structures have been seen in these spectra, particularly in Li : Xe (Rose et a1 1986) that 
can be interpreted as resonances, and this has prompted us to develop a theory which 
allows resonance positions and intensities to be compared with experiment. 

In this paper we shall only discuss and elaborate the theory. Because of its length 
and complexity we must leave any comparison of it with experiment for a later paper, 
along with the necessary discussion of resonance widths. The approach adopted here is 
a generalisation of the methods used to explain resonances in E €3 E Jahn-Teller systems 
(Slonczewski 1963, Darlison 1987), and it has greatly benefited from this earlier work. 
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In this paper we apply the cluster model (0’Brien 1972, Fletcher et a1 1980) and assume 
that any departures from this can be treated as perturbations. 

In earlier work on this system (O’Brien 1985) we found the resonances by starting 
from the uncoupled basis states and subsequently diagonalising the Jahn-Teller 
Hamiltonian in this basis. The matrix that must be diagonalised expands rapidly with 
coupling strength and the necessary computer time increases even more rapidly. This 
set an upper limit on the coupling strengths considered at that time (1985). Although 
this limit would be higher now, it is Ensatisfactory to press on blindly with more powerfu! 
computations, and instead we use here an analytical approach that should improve 
with increasing coupling strength (unlike matrix diagonalisation). As with E 63 E ,  our 
approach here will be to reduce the problem to a set of adiabatic potential surfaces which 
are only weakly coupled and, using these potentials, then to solve the Schrodinger 
equation. In § 2, we produce the transformations that operate on the Hamiltonian to 
define the adiabatic potentials. We note here that while the corresponding trans- 
formations in E @ E reduce the number of coordinates that must be handled from two 
to one, they bring the number in the present system down from five to two. Thus a 
Schrodinger equation in two variables must be solved. In § §  3 and 4, we derive this 
equation and the boundary conditions which the wavefunction must satisfy. As was the 
case with E @ E ,  it is the choice of boundary conditions that produces solutions of distinct 
symmetry classifications from the same potential surface. Finally in § §  5 and 6, we 
introduce numerical and analytical methods for finding the solutions of the Schrodinger 
equations; it is these solutions which give the resonance energies and intensities. In 
evaluating our expressions, we have limited outselves to one sign of the spin-orbit 
coupling and to resonances on the highest adiabatic sheet. This is the energy region 
where resonances are most clearly seen in both theory and experiment. We note in 
addition that the earlier matrix diagonalisation (O’Brien 1985) shows resonances on the 
middle energy sheet (for both signs of the spin-mbit coupling) SO a rich field still waits 
to be explored. 

2. Hamiltonian 

2.1. Definitions 

The interaction of i! p e!ectronic state at a site of cubic symmetry with the phonon modes 
of the octahedrally coordinated complex of ions surrounding it can be expressed (O’Brien 
1969) as 

The basis vectors of this representation are the three components { 1 E ) ,  1 v), 1 c)} of the 
orbital triplet state Ip). Under the symmetry operations of the ion complex, they form a 
basis for the TI irrep of the octahedral group 0 .  The {qe, qE, qE, q7, qs} are the five 
normal-mode coordinates of the &,-type and zzg-type vibrations of the complex. With 
the exception of the AI, breathing mode, only the E~ and z2, modes couple linearly to 
the TI electronic state. As given, (2.1) embodies a linear coupling of strength V between 
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the electronic state and the phonon modes, with both the 
coupled to the p state. 

and t2g modes equally 

The motion of the ligands (ions) is represented by the kinetic energy te rn  

-(fi2/2m)V2 + 4mo’q’ = H 0 (2.2) 

where V2 is the Cartesian Laplacian written in terms of the five normal-mode coordinates, 
and $mo2q2 is a harmonic potential. In (2.2), m is the ionic mass, 

and o is an effective frequency which can be interpreted within the cluster models of 
O’Brien (1972) and Fletcher et a1 (1980). (Darlison (1987) provides a useful discussion 
of both in the context of the E 8 E JT system.) 

The effect of spin-orbit coupling on the electronic states can be represented by 

~ O A E  (T = A(E,o., + + ~ ~ a , ) h o  H,, (2.3) 
where the electronic orbital momentum operators 

are represented in the { IE), 1 q ) ,  1 [)} electronic basis. The spin angular momentum 
operators are the usual ones 

in a spin doublet basis denoted by { 1 +$), 1-4)). 
Equations (2.1)-(2.5) allow us to define the total Hamiltonian 

H = Ho + HjT + H,, 

with which we shall be concerned. As will become evident when H i s  transformed, HjT 
and H,, are competing interactions. This paper will consider, in particular, that coupling 
regime in which both V and A are large. To this end it will be convenient to re-express 
H in a new coordinate system for the iigand motions and to appiy a series of unitary 
transformations in the orbital and spin spaces. 

2.2. Coordinate transformation 

The normal-mode coordinate system {qe, qE, q:, qv, qt} used in 0 2.1 is convenient for 
expressingHo, the oscillator part of H .  It does not, however, fully represent the symmetry 
of HJT, the electron-phonon interaction. We (Q‘Brien 1969,1971) first rook account of 
this through the application of a new coordinate system (4, cy, y ,  8 ,  q}. Writing the 
normal-mode coordinates in terms of these new coordinates we have 

= q[i(3 cos2 e - 1) cos cy + ( ~ ‘ 3 / 2 )  sin’ e sin cy cos(2y)l 

q E  = q[(V3/2) sin2 e cos(2q) cos cy + $(I + cos2 e) cos(2q) sin cucos(2y) 

- cos 0 sin(2q) sin cy sin(2y)l 
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q E  = q[(d3/2) s i n ( 2 ~ )  sin q cos cy - isin(20) sin p sin LY cos(2y) 
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- sin 8 cos ip sin a sin(2y)l 

qn = q[(V'7/2) sin(28) cos ip cos a - isin(28) cos ip sin LY cos(2y) 

qr  = q[(V'7/2) sin2 8 sin(2q) cos a + i(1 + cos2 e )  sin(2y) sin a cos(2y) 

+ sin 8 sin ip sin a sin(2y)l 

+ cos 8 cos(2ip) sin LY sin(2y)l 

where 0 s q < x., 0 S cy < n / 3 , 0  S y < x, 0 S 8 < iz and 0 S p < iz, in order to cover 
the domain of the normal-mode coordinates. 

The benefit of these coordinates will be appreciated when we introduce the T 
unitary transformation in § 2.3; a possible handicap is of more immediate concern: the 
{q ,  a,  y, 8, q} form a non-orthogonal coordinate system. This fact does complicate the 
expression of H o  in the new coordinates, but as has been shown (Q'Brien 1971, Judd 
1984) the new form of H o  is remarkably simple: 

jL2 A t + 4mw2q2 (2.7) 
1 

sinz(@ _" 2iz2/3) -t sin2(& + 2iz/3) 

where {Ax ,  A,, A,} are the three components of an angular momentum operator A within 
the phonon space. Explicitly, 

a 
ae 

a 

a 
jLx = i(cos y) (cot 8) - - (cosec 8) - + i(sin y )  - i ay ap 

( a:/ (2.8) ae 
a 

i,, = -i(sin y )  (cot 8 )  - - (cosec 8 )  

iL, = ia /ay.  

The action of the coordinate transformation has thus been to separate H o  into a 
vibrational term in the variables q and a and a rotational part associated with 3,. A 
Hami!:onian identical t c ~  (2.6) h2s beer, discussed by Behr ax! Mette!sen (1975) in 
their analysis of quadrupole oscillations in nuclei. The form that HJT takes in the new 
coordinates is reserved until § 2.3. In closing we note that H,, remains unchanged under 
this transformation since it has no dependence on the phonon coordinates. 

2.3. The unitary transformation in orbital space 

In order to write HJT in its most transparent form, we follow Q'Brien (1971) in defining 
a rotation operator Tin the orbital triplet space: 

= exp(iye,) exp(iee,) exp(iqEz). (2.9) 
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The matrices are represented in the { I  E ) ,  1 q), I c)} basis; the more compact exponential 
form uses the angular momentum operators given in equations (2.4). Applying Tin a 
unitary transformation to HjT we find that 

 COS a - d5 sin a) o 
THJTT-l  = v q [  o $(cos a + ~ ' 3 s i n  a> O o ] . (2.10) 

0 0 -cos a 

The {q ,  a, y ,  8, rp) thus makes the R3 rotational symmetry of HjT explicit. 
The variables which occupy the positions of the Euler angles in T are, in fact, the 

three phonon variables used in defining the components of h in (2.8). Tthus couples the 
rotational motion of the ligands to the rotation of the electronic state. To see this more 
clearly, we must consider the result of the T unitary transformation on Ho: T H O T I .  
Looking at equations (2.7) and (2.8), we see that only terms such as TlL,T-' can give rise 
to new terms. Noting that 

T(A,)* T-' = (TA, T')( TAx T - ' )  

we find that TA,T-' = A ,  + E ,  for i = x, y and z .  This is sufficient to demonstrate 
that THoT-' is identical in form to H o  except for the substitution A .+ A + E .  One angular 
momentum operator thus replaces another. 

To reap the full benefit of this unitary transformation, we must now apply it to the 
total Hamiltonian: 

THT-' = THOT-' + THJTT- l  + TH,,T-'. 
Only TH,,T-' remains to be calculated. 

example, 

TE,  T-' = (cos rp cos 8 cos y - sin rp sin y ) ~ ,  

Applying the transformation to the orbital operators in E - U we now find, for 

- (sin rp sin y - cos rp cos 8 sin y ) ~ )  + (cos q sin e ) € ,  
with similar results for E )  and E,. We handle this apparent complication by noting 
that the terms in T E  UT-' are of course of the form T E , ~ , T - ' .  Since the T unitary 
transformation is a rotation in orbital space, we might wonder whether there exists a 
unitary operator Vin the spin space such that VTE,~ ,T- 'V- '  = E,B,. for i = x ,  y ,  2. The 
positive answer to this question and the specification of V are now addressed. 

2.4,  The unitary transformation in spin space 
The necessary unitary operator takes the form of a general rotation in spin space: 

1   COS(^/^) -sin(8/2) 

(2.11) 

rexp(iyl2) 0 
v= i o  

= exp(iyo,) exp(iOo,) exp(irpo,) 

where the spin basis is {l+a), I-$)) and the oi are given in (2.5). As defined, V has the 
property that 

V T E ~ O ~ T - ' V - '  = T E ~ T - ' V ~ , V - '  = fori  = x, y ,  2. 

In fact, Vis just that rotation in spin space which tracks and reverses the effect of Ton 



52 C C Chancey and M C M O'Brien 

the interaction and thus is an example of the special connection between SO(3) and 
SU(2) (see, for example, Goldstein 1980). 

The V unitary transformation has no effect on HJT since that part of H has no spin 
dependence. Applying the spin rotation will not affect the operation of the T rotation: 

VTHJT T-' V-' = THJT T-' . 

The effect of the V transformation on H o  is more complex but, analogous to our 
experieace with the T transformation, we find that 

VAy-1  = A; + ai 
VTAT-'V-' = .A + E + U 

for i = x ,  y ,  z .  
Thus, 

J .  (2.12) 

Within H o  only the Ai operators will be affected by the spin and orbital rotations embodied 
in V and T. 

We may use the exponential forms of Tand V to write a combined exponential form, 

( V T )  = exp[iy(s, + a,)] exp[iO(e, + o,)] exp[iq(e, + a,)]. (2.13) 

We thus see that ( V T )  is just a general rotation in the coupled spin-orbit space. 
We now apply (VT) to the total Hamiltonian H to obtain 

(VT)H(VT)-' = -hw 

J :  + .  J t  + --)1+ JI fhwQ* 
sin'(& - 2x/3) sin2(@ + 2n/3) sin a 

$(cos cy + V3 sin a j  o 

(2.14) 

where Q = q(mo/h)"', Khw = V(h/mw)l" and J,, J y  and J ,  are the three components 
of the angular momentum operator J .  In interpreting J in (2.14), we are able to forget 
its antecedents and need only remember it as an angular momentum. Thus the first part 
of (2.14) is identical in form to our earlier expression for H o  given in (2.7). We shaii 
return to this fact when we next consider a representation for J .  

It is convenient for comparison to relate our Jahn-Teller coupling parameter K to 
those coupling parameters defined by earlier authors. We note that 

(2.15) 

where k is used in O'Brien (1971) and K is the coupling constant of Chancey and Judd 
(1983). 

O I  

[$(cos a - V5 sin a)  o 
+ h w K Q  0 

L O  0 -cos a 
+  WAC U 

K = k(4/15)'/' = ~ / Z K  

3. Solutions of the five-dimensional harmonic oscillator equation 

Although the energy levels and wavefunctions of the five-dimensional oscillator are well 
known (even in the curious coordinate sytem used here, see Corrigan et aZ(1976)), we 
shall calculate some of them now in order to have the techniques at hand. Starting with 
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the Hamiltonian equation (with hm = 1) 

-- 1 Q - ~  - Q4 - + [Q’ sin(3a)]-’ --(sin(3a) a $1 2[ ddgi a$) aa 

J ;  Jf 
sin’(a - 2n/3) sin’(a + 2x13) 

+ 

+ 4Q’Y = EY (3.1) 

we perform a separation of variables by putting Y =f(Q)@(e; J ,  M ) .  Two equations 
result: 

sin(3a) d e  

J ;  J :  
sin2(a - 27c/3) + sin’(a + 2x/3) + sin a. 

= AQ, (3.2) 
Jf 

and 

A 
$(Q4 -&) f + pf-  Q’f + 2Ef = 0. (3.3) 

It is known that acceptable solutions of equations (3.2) and (3.3) have A = -w(w + 3) 
and E = 2N + w + 3, where w and N are positive integers or zero. The integer w is the 
five-dimensional analogue of the angular momentum quantum number in three dimen- 
sions and it indexes the symmetric irreps of SO(5): (w, 0). Solutions to (3.3) can be 
expressed in terms of the generalised Laguerre polynomials, 

f(Q) = exp( - e ’ / 2 > e w  L !” 1 (3.4) 

where a = w + $ and N is a positive integer or zero. 
To find the solutions of (3.1), we exploit the fact that nothing need be known about 

theJ operators other than that they are angular momenta. They may operate in phonon 
space or in a coupled phonon-electron space. Whichever the choice, an analysis of the 
boundary conditions for (3.1) shows that J must be an integer for allowable solutions. 
(The unitary transformation VT must preserve the eigenvalues of the oscillator Ham- 
iltonian thus, in effect, requiring A to be half-integral if J = A + E + a) .  As usual the 
simplest case is J = 0.  Putting J ,  = J ,  = J, = 0 in equation (3.2) leaves the equation 

(l/sin(3a)) (d/da)sin(3a) (d/da) @(a; 0, A,)  = AQ,(a; 0, A I ) .  (3.5) 

This is a standard equation, and the solutions with acceptable boundary conditions are 
the Legendre polynomials: 

so that w = 3n, where n is a positive integer or zero. We see that this set of solutions 
includes the ground state for which w = 0, N = 0, with Y depending only on Q as would 
be expected for a harmonic oscillator ground state. 
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To solve the equation when J > 0 we now rearrange the a-dependent part of the 
Hamiltonian: 

J? +- 
sin2(a - 2n/3) sin2(a + 2n/3) sin2 a 

J 2  + J ;  

= (3/sin2(3a)) ( J :  + J ;  + J',) 

+ (d6/sin2(3a)) {[cos(4a) + 2 cos(2a)l (1/d6) (2J5 - J ;  - 1;) 

+ [sin(4a) - 2 sin(2a)l (1/v'2) (J?;  - J; )} .  (3.7) 

This form exploits the invariance of the Hamiltonian under the operations of the cubic 
group where interchange of x, y and z is associated with interchange of sin a, 
sin(a + 2n/3) and sin(a - 2n/3), and where the pair of functions sin cu and cos a span 
an E representation. The quantity within the large parentheses in (3.7) can be seen to 
be made up of E-type operators coupled so as to give an overall A, symmetry. 

Having deait with J = 0: we might reasonably expect to go on to the J = 1 case. The 
E-type operators are diagonal in the states of J = 1, so it is not difficult to write down a 
single uncoupled equation in a. However, this equation turns out not to have acceptable 
solutions on the basis of boundary conditions. This is satisfactory-we know from the 
symmetry analysis of the five-dimensional harmonic oscillator that there are no J = 1 
states! Continuing on to the J = 2 case, we find similarly that there are no acceptable 
solutions with a T, irrep label, and thus we may restrict ourselves to the remaining two- 
dimensional subspace labelled by the E irrep. 

To set up the pair of coupled differential equations in this subspace, we assume a 
solution of the form 

@(a; 2. E) = f (u j l2 ,@ + g(a)I2,4 ( 3 4  
where 1J = 2, 0) and iJ = 2: E )  are the E states for J = 2 in the standard notation. We 
substitute this into (3.7) to get the a-dependent part of the Hamiltonian 

9 3 
He=--- (As in (3a )  - :a) - 2sin2(3a) +v sin'(3cu) 

sin(3cu) d a  
x {[cos(4a) + 2 cos(2a)]a, + [-sin(4a) + 2 sin(2a)]o,) (3.9) 

which operates on the vector [ f (a ) ,  g(a)]. Here 0, and 0, are the spin matrices defined 
in equation (2.5). To solve this equation we make a unitary transformation 

(3.10) Hk = (cos a + 2ia, sin ajH,(cos a - 2i0, sin a) 

with the result 

' - ~ 1 / d  -sin(3a) - - 4i0, ' ~- sin(3a)j He - sin(3a)\da da ) ' \sin(3aj d a  

- 6 cot(3@)(aX - io,)  + (9/2 sin2(3a)) (2aZ - 1) - 6 0 ,  - 1. (3.11) 

The pair of coupled differential equations to be solved can now be written 

L ( d  sin(3a) d a  sin(3aj d a  

d d '(A sin(3a) - + 
sin(3a) d a  d a  sin2(3a), d a  

)G(a j  + 2-F(a) = AG(a) 
(3.12) 
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where [ F(a), G ( a ) ]  is the new basis. This form pushes us towards the use of Legendre 
polynomials in any solution, and the relevant equations are 

1 + 9n(n + 1) P , , ( c o s ( ~ ~ ) )  = 0 

where 
Pi(cos(3a)) = 3(d/da)Pn(cos(3a)) 

and 

‘(dsin(3a))Pi(cos(3a)) sin(3a) d a  + 3n(n + 1)Pn(cos(3a)) = 0. 

The Legendre polynomials P,, and the associated Legendre polynomials P), are designed 
to remain finite at a = 0, n/3, and thus they can be used with confidence here. Using all 
of the above equations results in two sets of solutions: 

(i) F(a) = nPn(cos(3a)) 

(ii) F ( a )  = (n + 1)Pn(cos(3a)) 

G(a) = P~(cos(3a) )  A = -(3n - 1)(3n + 2) 

G(B)  = - P ~ ( C O S ( ~ ~ ) )  

A = -(3n + 1)(3n + 4). (3.11) 

These solutions exist for every positive integer n, and with n = 0 only solution (ii) with 
G(a)  = 0 appears. We thus have the complete set of J = 2 solutions, corresponding 
to w = 1, 2, 4, 5 ,  7, . . . , as is predicted by group-theoretical analysis (Judd 1974). 
Substituting some of these results back, we find that for w = 1, 0 = cos(a)l2, 6 )  + 
sin(a)l2, E ) ,  and for w = 2, @ = cos(2a))2, 6 )  - sin(2a)12, E ) .  

Finally in this section, we look at the J = 3 solutions. Under cubic symmetry, J = 3 
breaks down into A2 + TI + T2: and we have already rejected TI and T2  states as 
unacceptable. A2 is not coupled to T states by the E-type operators, and thus (3.2) and 
(3.6) lead to the uncoupled equation 

This equation has the set of solutions 

@(a; 3, A2)  = P ~ , ( c o s ( ~ ~ ) )  with A = -w(w + 3), w = 3n 

and n any positive integer. So E = 2N + w + Q = 2N + 3n + 3. This gives all the J = 3 
solutions. As expected from the group-theoretical decomposition, J = 3 only occurs in 
the irreps (w, 0) if w = 3n, n > 0. 

4. Solutions of the transformed, coupled equations 

4.1. States with no electron spin 

As we showed in § 2, the transformed Hamiltonian in the absence of any spin effects 



56 C C Chancey and M C M Q’Brien 

takes the form (fiw = 1) 

J 2  + J? + -1 J Z  j. 
sin2(@ - 2n/3) sin’(& + 2n/3) sin- CY 

+(cos o( - v‘? sin a> o 0 

+(cos CY + *sin CY) 0 + KQ[O 

+ 3Q’V = EV.  

0 0 -cos CY 

In equation (4.1), the angular momentum operator J is A + E ,  where A is the original 
angular momentum operator in the phonon space, E operates in the set of electronic T, 
states and the 3 x 3 matrix represents the Jahn-Teller interaction within these same 
states. It wil! be convenient to express the Jahn-Teller interaction in terms of the 
components of E: 

H,T = KQ[cos(cY)($E~, - 1) + 6 sin(&)(&$ - E : ) ]  

= KQ[cos(a)Op(e) + sin(a)Op(e)]. ( 4 4  
This form makes the construction of HjT from E-type operators very clear. The 
uncoupled states in this transformed representation can be recognised by putting 
K = 0. This leaves an equation that looks like (3.1) and we know, for instance, that the 
ground state corresponds to J = 0 and has the energy E = 2.575~. To get J = 0, we must 
couple A and E to zero; E = 1 so A must also be 1, and the ground state can be denoted 
by the vector l(lL = I, E = 111 = 0) to indicate the coupling. 

In this paper we are only interested in those states which couple with the uncoupled 
ground state, and since HJT is independent of A,  we may confine ourselves to states with 
il = 1. This means that we are working in the set of states 

i(;l = 1, E = 1)J = 0, A , )  

l(A = 1, E = 1)J = 2, 6 )  

l ( i l  = 1, E = l)J = 2. E ) .  

(4.3) 

No other states are connected to this set by the E-type operators in HJT. 

angular momentum eigenvector components (iAx), lAy), lA2)) and ( I E ~ ) ,  
we have 

The coupling scheme is most easily seen if we express the states (4.3) in terms of the 
Isz)). Then 

1 J =  0, Ai)  = ( ~ / V ‘ ~ ) ( I A ~ ) I E ~ )  + IAy) iEy>  + Iilz)!~,)) 

IJ = 2, e )  = W 6 ) ( 2 l ~ ~ ) l & ~ )  - l ~ & )  - I ~ J E ~ ) )  

I J  = 2,E) = (1 /d2) (Px) l&J  - lPy)lEy)) 

(4.4) 

and, for the inverse transformations, 

IA,)JE,) = (1/d3)/0, A,)  - (1/d6)!2, e)  + (W’2)12, E) 

! A y  I E ~ )  = (1 /~3>10,  Ai)  - (l/d6)12,e) - (1/d2)I2, E )  (4.5) 
I L ) I E ~ )  = (1/d3)I07 A I )  + (2/3)1’2127 e). 
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HJ,isdiagonalin thestates{lil,)/&,), ( A Y ) l & J ,  /lb,)/~Z)}aswecansee byrecalling equations 
(2.9) and (2.10). However, we see from equation (3.9) that there are terms in the 
Hamiltonian (equation (3.1)) proportional to l/Q’that act between the states 12, 6 )  and 
12, E ) .  These include off-diagonal terms and thus in the representation expressed in 
equations (4.5) the total Hamiltonian takes the form 

-i[ $[Q4  $1 + [ Q 2  sin(3a)l-’ aa 

+(cos a + V?sin a) o Y 

o 

O I  

1 
f(cos a - V? sin a) 

+KQ[O 

0 0 -cos a 

-2h - f - V?g h + 2f h - f + V?g 

h - f - V?g Y = EY + [  h + 2 f  -2h - f + V?g 

h - f - V?g h - f + V\/5g -2h + 2f 
where 

h =  
3 CoS(4a) + 2 COs(2a) -sin(4a) + 2 sin(2a) 

f = 2 ~ 2  sin*(3a) b o =  2Q2 sin2(3a) 2Q2 sin2(3a) 
(4.6) 

It is clear that the Hamiltonian, in this form, represents motion on three potential 
surfaces whose energies vary with (2 and a, within the basis given above. In the absence 
of centrifugal terms, the surfaces cross in pairs at a = 0, n/3, etc. Inspection of the 
centrifugal terms shows that they couple the states of different potentials at the crossing 
points but are otherwise very small. 

In particular, the singularity that might be expected at a = 0 is not present on the 
- KQ cos a surface. If K is taken as positive, this defines the lowest potential surface as 
4Q2 - KQ cos a, which is just a harmonic oscillator potential with its minimum displaced 
to (Q = K ,  a = 0). In this case, the lowest energy levels are very closely approximated 
by those of the harmonic oscillator. To get the levels on the upper surfaces we would 
need to go into more detail concerning the edge conditions arising from the centrifugal 
terms, and in this paper we shall do this in conjunction with the addition of spin-orbit 
coupling. 

4.2. States with electron spin 

As shown in 3 2, the effect of including electron spin and spin-orbit coupling necessitates 
a further transformation, V ,  which leaves us with the Hamiltonian (4.1), with J now 
equal to h + E + U and with a term AE - U. We shall work in a scheme in which E and 
U are first coupled to a resultantj (only j = 4 and j = 3 are possible for 2P states), and this 
j i s  coupled to A to giveJ. As before we start by identifying the uncoupled ground states 

1(A = 4, j = f ) J  = 0, A,)  

1(A = 4, j = 4)J = 0, A,)  
(4.7) 

where these represent the electronic states before the addition of Jahn-Teller coupling. 
These states have different values of A and consequently do not mix with each other. 
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Table 1. The Op(0) and O P ( E )  matrices in the ( j ,  m,) basis statesof P 4.2. 

I 
1 
2 0 0 1 0  0 0 
0 -1 0 0 1 

0 I O  -_ 1 llV2 0 0 
0 0 0 0 l/V2 0 

@(&) ($,$) ( 3  2 ,  -4) (f 9. -1) 2 (3  2. -I) ($,1) - (&,d )  

0 
0 
0 
1 fd2 
0 
0 

We are thus able to consider sepaiately the higher-energy coupled states, which have 
overlaps with each. 

We start with the A = 4 states. In addition to l(A = 8, j = a), J = 0, A,) there are 
l(A = 8, j = P)J = 2, 8) and I(). = 8, j = # ) I  = 2, E) and no other solutions (with j s $). 
To set up the Hamiltonian in this basis, we need the matrix elements of HjT expressed 
within the j states. To this end: we find the matrices for Qp(0) and QP(E) in equation 
(4.2) after which an exercise in recoupling gives the Qp(8) and OP(E) matrices in the 
( j ,  mi) basis states (see table 1; the phase convention is that of Condon and Shortley 
(1935)). We continue by coupling thesejstates to the A = 8 states to produce the matrix 
representations shown in table 2. 

Now we can express HJT = KQ[cos(a) Op(8) + sin(&) OP(E)] and, after making 
one further change of basis, we get 

r-hKQ cos(3a) + A/2 4KQ sin(3a) ! I (W2)KQ.l 

~ 

where the new basis states are { la ) ,  Ib), IO)} and 

la) = cos(a)/b = 2, 0) + sin(a)lJ = 2, E )  

lb) = -sin(a)/J = 2 , 8 )  + cos(a)jb = 2, E )  (4.9) 
IO) = IJ = 0 ,  A ] ) .  

Table2.TheOp(6')andOp(&)matiicesinthe{l(IL = l . j = i ) J = O , A , ) .  
l(1. = 1, j =I)]= 2, e) .  I(), = 4.j = I)J = 2, E ) }  basis. 

1 0 0 0 1 l/V2 

0 - _  1 JV2 0 0 
0 l/V2 0 l/d2 0 0 

1 1 
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This basis transformation is the same as that involved in the similarity transformation of 
the J = 2 representation in equation (3.10). We thus know what happens to the cen- 
trifugal terms, including those derived from the transformation of the 

(I/sin(3a)) (a/a a)[sin(3a)( ala a)] 

operator. 
Thus far everything has been exact; we now begin preparing for our numerical 

analysis by first diago~zlising (4.8). Its roots will define the adiabatic energy surfaces 
with which we shall work. These energies depend on Q and 3a ,  and recalling the variable 
limits set in conjunction with equations (2.6), we note that these surfaces will be defined 
within the wedge (0 < a < n/3, Q 3 0) in (Q, a)-space. We also note that the centrifugal 
terms become infinite at Q = 0 and at sin(3cu) = 0, and these along with the Q2 harmonic 
potential term will put bounds on any solution. 

Because of the two-dimensional nature of the potential-energy space, it is convenient 
to transform the differential opeator part of the Hamiltonian into a form which uses the 
two-dimensional Laplacian. We do this by the unitary transformation that is equivalent 
to extracting a factor [e’ ~in(3a)]-’’~ from all wavefunctions, so as to get a new form for 
H ,  

$cot (3a) 

(4.10) 

Note that this transformation to two-dimensional form introduces an additiona! cen- 
trifugal term which could be regarded as appearing in the matrix of centrifugal terms. 

Away from the edges of the wedge, the potential surfaces are well behaved and well 
separated as long as K and A are large (which is the regime this work is aimed at). 
Standard Born-Oppenheimer theory can be used for motion on such surfaces. In this 
approach two corrections appear as a result of transforming the kinetic energy: one 
diagonal and one off-diagonal. The diagonal correction will skirt the energy levels. while 
the off-diagonal one will broaden them in the manner described for E C3 E by Darlison 
(i987j. Both corrections become iess important as the scaie of the potentiai energy 
increases, which is fortunate since it is not our intention to calculate them in detail in 
this report. 

At the edges of the region, the centrifugal terms become important both because 
they mix and shift the potentiai surfaces and because they cause the differential equation 
for motion on the surfaces to become singular. Having singularities at the edges means 
that the way in which the wavefunction varies at the edges must be carefully considered, 
and the result fed back in to the solution (analytical or numerical) of the Schrodinger 
equation as a set of boundary conditions. 

In what follows we shall consider only the uppermost potential-energy surface and 
shall assume that A is negative. This is because this is the case for which the energy 
resonances are most clearly seen; also, we shall avoid a degeneracy at Q = 0 in this 
situation, which would otherwise complicate matters. Now we see from equation (4.8) 
that the basis for this uppermost sheet goes into 10) when Q + 0. We also note that at 
the edges, where sin(3a)+ 0, the other basis state coupled in is la). Reverting to 
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equations (3.11) and (4.10), we find that the important centrifugal terms are 

I a) 10) 
(4.11) 1 [-:/[8Q2 sin2(3a)] + 2/Q2 0 

-9/[8Q2 sin2(3a)] 

This tells us that the a boundary conditions are the same for both basis states; in fact, 
the wavefunction goes as [sin(3a>]-‘” as we found in S 3 for the J = 0 and the J = 2, 
w = 1 states. The boundary condition at (2 = 0 is different for the 10) and the l a )  states, 
and this enables us to pick out the solution that goes into IO) at Q = 0 by an appropriate 
choice of a power of Q. In sum, then, the recipe for finding the appropriate set of 
solutions is to solve the two-dimensional Schrodinger equation 

where V ( Q ,  a) is the highest root of (4.8) with A < 0. For boundary conditions, we 
require that the wavefunction must behave like [Q’ sin(3a)]”’at the edges of the region, 
except of course at large Q where it must tend to zero. The solution of equation (4.12) 
has been carried out numerically, as is described in Q 5.  We discuss an approximate 
analytical solution in § 6. The intensity of the resonances for given wavefunctions is 
given by the square of their overlaps with the Uncoupled ground state, 

Yo = N[Q’ sin(3a)]’/’ exp(-Q2/2)10) (4.13) 

where N is a normalising factor and the [Q‘ sin(3a)l’” factor occurs due to our trans- 
formation to a two-dimensional Laplacian. 

We now turn our attention to the states which couple to the A = 4 states of (4.7). 
What follows is similar to, but slightly more complicated than, the earlier analysis for 
the A = t states. We first list the states that can be constructed; they are 

i(A = $ , j  = $ ) I =  0. A , )  

I( i .  = $, j = $)I  = 2, E )  

l(A = $. j = $)I  = 2, 6) 

l(A = $ , j  = $)I  = 3, A2) 

l ( I i  = 4, j = f ) J  = 2, 6’) 

/(A = 3 , j  = 4)I = 2, E ) .  

(4.i4) 

No other states can be coupled to the uncoupled ground state by the E-type operators 
in HJT. If we now do the coupling explicitly and put in these operators, we find that the 
states divide into two sets: 

(l/q2)[1(A = 3 , j  = $)I  = 2, 6) + i(A = $, j = $ ) J  = 0, A,) ]  

(l/d2)[1(A = 4, j = $)I  = 2, E )  + \(A = 4 , j  = $ ) J  = 3, A2)] (4.15) 

l(A = 4 , j  = 6 ) J  = 2, E )  

and 
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Within each of these sets the operators Op( e )  and Op( E )  are exactly as given in table 2, 
with no elements connecting the two subspaces. Consequently, any linear combination 
of the sets will produce the matrix (4.8). 

Now consider again the sorts of states we are seeking: they must lie on the potential 
surface that has energy -Ahco at Q = 0, so the bases at Q = 0 must be a combination 
of j(A = 2, j = 4 ) J  = 2, 6) and l(A = 4, j = 4)J = 2, E).  We choose the combination 
cos(a)i(A = 4, j = 4)J = 2, 6) + sin(a)l(A = 4, j = 4)J = 2, E ) ,  which we know corre- 
sponds to the ( J  = 2, w = I, j = 4) state, and then do the same transformation on the 
other states of (4.15) and (4.16). We follow this with the further transformation which 
produced (4.8) and find that the basis vectors for the current representation of (4.8) are 
now (retaining the same labels for convenience) 

1 a) = ( l /V2) [ 1 (A = I, j = $) I  = 0, A 1 ) - COS(~CU) 1 (A = I, j = 3) J = 2, 6) 

+ sin(2a))(A = 4, j = 4)J = 2, E ) ]  

Ib) = (1/‘/2)[-1(A = P, j = $ ) I  = 3, A,) + sin(2a)i(lb = $,j = $) I  = 2, 6) (4.17) 

+ cos(2a)/(ib = B. j = 4)J = 2. E)] 

10) = cos(a)l(A = 4, j  = 4 ) J  = 2, 6) + sin(a))(A = 4.1 = 6 ) J  = 2, E ) .  

Another possibility is suggested by the fact that 

I J = ~ ,  w = 2 , j = 6 ) = c o s ( 2 a ) I : A = f , j = 4 ) J = 2 ,  6)-sin(2a)~(A = $ , j = + ) J = 2 , ~ ) .  

Using this linear combination gives the same matrix with the bases now identified as 

la) = (l,”d2)[cos(3a)1(A = 4, j = 4)J = 0, A,)  - sin(3a)i(A = 2, j = 4)J = 3, A?) 
- cos(a)l(A = 5, j = $)I = 2, 6) - sin(a)l(ib = 2, j = $) I  = 2, E ) ]  

lb) = (l/V2)[-sin(3a)/(it = 4. j = j ) J =  0, A,)  - cos(3a)/(A = 4 , j  = 4 ) J  = 3. A,) 

- sin(a)l(A=4,j=j)J=0, 6) +cos(a~l(j l(A=4,j=4)J=2,~)] (4.18) 

10) = cos(2a)/(A = I , j  = +)I = 2, 6) - sin(2a)l(A = I ,  j = 4)J = 2. E). 

The boundary conditions to be imposed on the solutions and the centrifugal terms to be 
included are chosen exactly as before. with :he result that equation (4.12) is unchanged 
except for anextraterm. -w(w + 3)/Q2, inside thelargesquare brackets. Thewavefunc- 
tion now goes as Q w [ @  ~ i n ( 3 a ) I l ’ ~  at the edges, where w = 1 for (4.17) and w = 2 for 
(4.18). As before, the intensity of each resonance is given by the square of the overlap 
with the Uncoupled ground state lJ = 0, AI).  However, since the A I  symmetry com- 
ponent is now absent from the 10) state this results in the A = 4 resonances on the 
uppermost sheet being very much weaker than the A = 4 resonances. The justification 
for choosing just twoJ = 2 states (w = 1 and w = 2) is that when uncoupled these belong 
to different energy levels (n  odd and n even, respectively). Other J = 2 states will only 
repeat the odd or even uncoupled states. 
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5. Numerical method 

The differential equation was solved on a hexagonal mesh of points, the hexagonal 
geometry being chosen so that the LY = 0 and a = n/3 edges coincided with lines of points 
on the mesh. The solution was represented by an amplitude at every mesh point. If a. is 
the amplitude at one point, and if a,, . . . , a6 are the amplitudes at the six nearest 
neighbours, then an equation of the form 

-iv2v + VY = Ev' (5.1) 

can be translated at that point into 

-[1/(362)](~, + U 2  + U 3  + U 4  f U j  + U6 - 6 ~ 0 )  + V,Uo = E U o  (5 .2)  
where 6 is the distance between neighbouringpoints, and there is one such equation for 
every point. Thus we have a matrix eigenvalue equation, with the eigenvalue being the 
energy and the eigenvector being the set of values of the wavefunction at the mesh 
points. 

The method of putting in the boundary conditions is illmtrated in figure 1. In 
considering the group of points near the edge. centred on the point labelled 0, we need 
to rewrite equation (5 .2)  so that it does not depend on a l  or a2.  We assume that a,, a2 
and a. are all given by the edge conditions so that the ratios u1/u0 and u2/u0 are known; 
in this way (5 .2)  is modified, a ,  and a2 are removed and the coefficient of U, is changed. 
This procedure forces the amplitude on the boundary to be zero, as required. The 
boundary condition W + 0 as Q -+ x is dealt with by putting Y = 0 at the third edge of 
an equilateral triangle that contains the mesh points. This approximation will tend to 
increase all the energies above what they should be, and its validity can be tested by 
varying the size of the triangle. 

The matrix whose eigenvalues we require is both large and sparse: so we use the 
Lanczos process (Parlett and Reid 1980) to find the few lowest eigenvalues for which the 
amplitudes on the mesh can be taken as agood approximation to the continuous function. 
The Lanczos process does not readily give the eigenvector but it does give the overlap 
of the eigenvector with any chosen initial state. We can accordingly select the initial state 
to pick out wavefunctions of particular symmetry, and in particular by choosing the 
initial state to represent the uncoupled ground state, the calculated resonance intensities 
can be found directly. 

a5 0 4  

06 

8 01 a2 

e3 

Figure 1. The arrangement of lattice points near 
a boundary (cu = 0. n/3). The labelling shown is 
used in writing the difference equation relating 
the amplitudes at neighbouring points, equation - - - (5 .2) .  - - 
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Table 3. The resonance energies and intensities: a comparison of the present calculations 
with the results of O’Brien (1985). The coupling strengths used were A = -7 and K = 
20/615 ( k  = 10 in the notation of O’Brien (1985)). 

O‘Brien (1985) Present calculation 
( j  = 4) ( j  = 4, w = 0) 

Energy/fiw Intensity Energylhw Intensity 
~ 

11.8 0.655 11.6 0.717 
15.1 0.088 14.9 0.087 
16.9 0.005 16.8 0.006 
18.2 0.006 18.1 0.008 

( j  = $) ( j  = $, w = 1,2) 

Energylhw Intensity w Energy/hw Intensity 

13.4 0.0534 1 13.3 0.072 
15.1 0.005 2 14.9 0.003 
16.6 0.007 1 16.4 0.004 
18.2 0.0008 1 17.6 0.0076 
19.7 0.0005 2 17.8 0.006 

This method was used to solve the three difference equations with edging and 
centrifugal terms corresponding to ( J  = 0, w = 0 ) ,  (1 = 2 ,  w = I) and (1  = 2. w = 2) as 
derived in § 4. The function V to be put in (5.1) is found by first finding the highest root 
of the 3 x 3 matrix of HJT A E  - U ,  using Cardan’s solution of a cubic equation, and then 
adding in the appropriate centrifugal terms. The function that gives the variation of the 
overlap with the uncoupled ground state from point to point is also calculated with V 
and is included as a modificatioii of the initial vector. The results for one set of values of 
the parameters are shown in table 3 and figure 2. Table 3 also shows the resonances as 
previously calculated by matrix diagonalisation (O’Brien 1985). We regard the agree- 
ment between these two sets of results as confirmation of the correctness of the approxi- 
mation and method adopted in this paper. 

6. An approximate analytical S Q ~ U ~ ~ Q I I  

Using the results of § § 3 and 4, it is possible to construct an analytical solution in the 
adiabatic approximation which is accurate for 0 s Q < f i l  A/Kl.  For eigen-states of 
H which are localised within this region of @space, this approximate procedure will 
provide energies and resonance intensities which may offer a check on our numerical 
calculations. Our programme shall be: first, to solve for the highest eigenvalue of 
equation (4.8), given that A < 0: secondly, to substitute a tractable approximation 
of this eigenvalue expression for V(Q. CY) in equation (4.12), thereby obtaining the 
differential equation to be solved. As outlined in § 4. this method will give us energies 
andintensities for the three cases of interest: ( J  = 0, w = 0 ) ,  ( J  = 2, w = 1) and ( J  = 2, 

We begin with the ( J  = 0, w = 0 )  case by performing a perturbation expansion for 
w = 2). 

the lowest eigenvalue of equation (4.8). To second order, 

Eo = 1Alhco(l + K 2 Q 2 / 3 A 2 )  
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Figure 2. The resonance intensities for (a )  j = $ and (b )  r' = 4. The broken cilrve shows the 
matrix diagonalisation calculation of 0'Brien (1985) and the full lines give the line spectra 
as determined in the present analysis. Both horizontal energy scales are in units of ho. The 
vertical intensity scales differ: table 3 provides values for the resonances shown; A = -7 
and K = 20/g15 (equal to k = 10 in the notation of O'Brien (1985)). The lower energy 
resonances shown in O'Brien's (1985) czlcn!ztio:: rcsc!t fro- Iransitions involving the 
two adiabatic potential surfaces. 

which should prove an accurate approximation as !ong as 3A' + K'Q2. Identifying Eo as 
the V ( Q ,  a> potentia! term in equation (4.12), we are now able to write an equation for 
the (J = 0, w = 0) eigenstates and energies: 

where U'  = w(1 + 2K2/3jA\)i/' and E' = E - \ A / h o ' / ( l +  2K'/3iAl)' '. 
We must aiso distinguish Q' = q(rmo'/h)'/' from Q = q ( m ~ / h ) ~ / ~ ,  that is, Q'  = 

Q ( l  + 2K2/31A1)1/4. This difference in scale will matter when we come to calculate 
overlaps involving the uncoupled ground state. 
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Equation (6.2) is identical in form to equation (3.1) (for the case of zero angular 
momentum), and we can write down expressions for Y and the (J = 0, w = 0) energies 
using the solutions of 8 3.1: 

E/hw = (1 + 2K2/3IA1)’” (2N + 3v + $) + IAl (6.3) 
where v = 0,1,2,  . . . arises from the a-dependent part of (6.2). Non-zero overlaps with 
the uncoupled ground state will involve only the YNv(Q’,  a) states with v = 0 and we 
can restrict ourselves to these: 

(6.4) 

where lye) is the eigenvector corresponding to the lowest root of (4.8), obtained by a 
perturbation expansion to first order in (K/A), and N o ( N )  is a normalising factor. Taking 
the overlap of (6.4) with the uncoupled ground state, 

we obtain an expression which, when squared, provides a measure of the intensity of 
the electric dipole transition between these states: 

where we have omitted the normalising factors for simplicity. In (6.6), we have used 
d t  = Q’4 sin(3a) d o  d Q’ since this is the Q f -  and a-dependent part of the differential 
volume element in { Q ’ ,  a, 8, q ,  y}-space. Substituting Q = Q’(1 + 2K‘/31A/)-’/4 and 
evaluating the integrals using formula 7.414.7 of Gradshteyn and Ryzhik (1980) allows 
us to evaluate equation (6.6) with the result 

I(O0:NO) = (T(N + 3)/3N!) S-N- j /* (S  - 1)“ (6.7) 

where S = 4[1 + (1 + 2 P / 3 / A  I)-’/*]. Calculation of the appropriate normalising factors 
is straightforward using formulae 7.414.3 and 8.976.3 of Gradshteyn and Ryzhik (1980). 
Table 4 provides a comparison between the energies and transition intensities obtained 
using (6.3) and (6.7) and those obtained through the numerical method of § 5 .  For the 
couplings chosen ( K  = 80/d15 and A = -120), (K/A)* < 0.03 and we should expect 
c r  approximatior? to be fair!y accurate. This is confirmed by the close agreement 
between the numerical and analytical values. 

Table 4. 4 comparison between the ( J  = 0, w = 0) resonance energies and intensities as 
calculated by the methods of § 5 and the analytical approximation of 0 6. Coupling strengths 
A = -120 and K = 80/d15. 

Numericai solution Analytical approximation 

Energylhw Intensity 2N + 3v Energylhw Intensity 

124.7 0.802 0 124.6 0.794 
128.3 0.154 2 128.3 0.165 
130.3 0.001 3 130.1 0.000 
132.0 0.023 4 131.9 0.021 
133.9 0.000 5 133.8 0.000 
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Now turning to the ( J  = 2, w = 1) and ( J  = 2, w = 2) energies and intensities, we 
have a Hamiltonian equation identical to (6.2) but for an additional factor of 
-&(IQ + 3)hw/Q2. Writing this addition in terms of e', the Hamiltonian equation 
becomes 

--[Q'--4z(Qr4z) $0.)' a a + [Q" 
2 

hw' 1 w ( w  + 3 )  'T[Q'*+ Q l 2  )Y = E ' Y .  

Following 9 3, we set Y(Q', a) = P,(cos a)T(Q ' ) ,  where v = 0, 1, 2, . . .. Equation 
(6.8) now becomes 

T=O. (6.9) hw' 
d d [ w ( w  + 3) + 9v(v + l ) ]  

Q'-4m(Qr4m)T- ( e 
Equation (6.9) closely follows equation (3.3) and, using our experience, we can write 
the energies as 

E / h w = ( 1 + 2 K 2 / 3 ~ A ~ ) " 2 ( 2 N + p +  % ) +  IAI (6.10) 

wherep is determined by taking the positive root ofp(p + 3) = w(w + 3) + 9 v ( v  + l ) ,  
with w = 1 or 2, as required. 

The solution to equation (6.9) takes a form similar to equation (3.4): 

1 

(6.11) 

(6.12) 

where N,(N, v) is a normalising factor and Iyw) is a first-order perturbative eigenvector 
of (4.8) given by 

(6.13) 

where 10) and la) are defined using equations (4.17) for w = 1 and equations (4.18) for 
w = 2. Tramition intensities obtained using equation (6.12) are compared in table 5 
against the iiuriieiical calculations of § 5 .  The COiieSpGnding positions of these lines in 
energy are given in the same table using equation (6.10). To the degree of accuracy 
which seems justified within our approximate analysis, the agreement between analytical 
and numerical values is good. 

Iyw) = 10) - (V2KQ/3A)la) 

7. Discussion 

We believe that we have given a satisfying account of the origin of the resonances on the 
uppermost potential surface of the TI 8 ( E ~  CE zZg) Jahn-Teller system. The calculations 
done previously (O'Brien 1985) were able to handle fairly strong couplings through the 
use of heavy computation; the method presented here is capable of numerically handling 
far stronger couplings (as shown in § 5). The analytical method of H 6 complements these 
numerical approaches in that it is capable of addressing cases in the K s A coupling 
regime. 
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Table 5 .  A comparison between the ( J  = 2: w = 1 , 2 )  resonance energies and intensities as 
calculated by the methods of 0 5 (numerical) and 0 6 (analytical approximation). Coupling 
strengths A = -120 ana K =  80/d15. 

Numerical solution Analytical approximation 

Energylhw Intensity N v Energy/ho Intensity 

(a)  w = 1 
126.48 
130.07 
131.04 
133.65 
134.71 
136.26 
137.43 

( b )  w = 2 
128.27 
131.73 
132.19 
135.24 
136.10 
130.96 
139.05 

0.0059 
0.0014 
0.0002 
0.0002 
0.0001 
0.0000 
0.0000 

0.0000 
0.0007 
0.0018 
0.0000 
0.0000 
0.0000 
0.0000 

0 0  
1 0  
0 1  
2 0  
1 1  
0 2  
3 0  

0 0  
1 0  
0 1  
2 0  
1 1  
0 2  
3 0  

126.43 
130.10 
130.88 
133.77 
134.55 
136.09 
137.44 

128.26 
131.93 
131.93 
135.60 
135.60 
136.78 
139.28 

0.0082 
0.0025 
0.0000 
0.0005 
0.0000 
0.0000 
0.0001 

0.0000 
0.0000 
0.0036 
0.0000 
0.0000 
0.0000 
0.0000 

In the analysis applied in this paper, the resonances have positions and intensities 
but no widths. Yet even the cluster model is capable of producing some line broadening 
due to the coupling of the potential surfaces (which we have neglected) and there will 
be some shifting of the resonance energies and intensities from the same cause. As we 
move away from the cluster approximation, the effect of many-phonon modes will also 
broaden the resonances and shift their positions. Even so: we believe that the stronger 
the coupling, the better the approximation used here will be. These effects in the E €3 E 

Jahn-Teller system have been discussed by Darlison (1987), and the treatment for 
T1 @ ( E ~  63 t2J should follow similar lines. 

Two related points that deserve comment are the degeneracy of the angular momen- 
tum states constructed in 0 3 and the nature of the 'rotational' part of the wavefunction. 
I ne angular momentum operators iii eqiiaiioiis (2.7) have eigeiistaies which are charac- 
terised by three eigenvalues: the total angular momentum (A ( A  + 1) with A a positive 
integer, half-integer or zero), and two magnetic quantum numbers ,U and p 2  where ,U = 
i, A - 1, . . . , - A  and p2 = A ,  A - 1, . . . , -A.  Thus, the total degeneracy of the A state 
is (2A + 1)2. If we take p1 to be the eigenvalue of the operator A, = i(d/dy) then y2is the 
eigenvalue of i (J /Jq) .  In the discussions of § §  3 and 4, we have used the matrix 
representation of a general angular momentum operator in a basis expressed as jJ, M I ) .  
It must be understood that as far as the i, operator is concerned, the basis is IA, u J .  
However, every state I),, pl) should really be written as ,ul, ,u2) where u 2  does not 
participate in the coupling but introduces an additional degeneracy of order (2A + 1) in 
all the states. 

An example of this is the set of expressions for the normal-mode coordinates, 
equations (2.6). This set spans the (1,O) irrep of SO(5) as well as the A = 2 irrep in 
SO(3). In 0 3, the ( J =  2, w = 1) solutions were shown to be of the form 
cos( a) 1J = 2, 8) + sin( a) I J = 2, E ) ,  where 8 and E label specific linear combinations of 

m, 
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MI states. Expressed in terms of the A eigen-states, the (A = 2, w = 1) solutions must be 
written as the five states cos(a)lA = 2, 8 ,  ,u2) + sin(a)lA = 2, E ,  ,u2), with y2 = 2, 1, 0, 
-1, -2. Putting in the explicit forms of these wavefunctions in suitably symmetrised 
combinations will give the set of coordinates in (2.6). In addition we note that in § 4, the 
(2A + 1)-fold degeneracy in p2 gives the correct degeneracy for the various Jahn-Teller 
coupled states. 

In closing, we emphasise that our analysis has provided a combined approach, 
both numerical and analytical, which allows the competing Jahn-Teller and spin-orbit 
interactions to be dealt with on an equal footing. The problem of line widths will be dealt 
with when we come to compare our theory with experiment. 
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